Satz von Cantor, in der Mengenlehreder Satz, dass die Kardinalität (numerische Größe) einer Menge streng kleiner ist als die Kardinalität ihrer Potenzmenge oder Sammlung von Teilmengen. In Symbolen enthält eine endliche Menge S mit n Elementen 2n Teilmengen, so dass die Kardinalität der Menge S n ist und ihre Potenzmenge P (S) 2n ist. Während dies für endliche Mengen klar ist, hatte niemand ernsthaft den Fall für unendliche Mengen in Betracht gezogen, bevor der deutsche Mathematiker Georg Cantor — der allgemein als Begründer der modernen Mengenlehre anerkannt ist — gegen Ende des 19.Der Beweis von Cantors Theorem für unendliche Mengen von 1891 beruhte auf einer Version seines sogenannten Diagonalisierungsarguments, mit dem er zuvor bewiesen hatte, dass die Kardinalität der rationalen Zahlen dieselbe ist wie die Kardinalität der ganzen Zahlen, indem er sie in eine Eins-zu-Eins-Entsprechung einfügte. Die Vorstellung, dass im Falle unendlicher Mengen die Größe einer Menge mit einer ihrer eigentlichen Teilmengen übereinstimmen könnte, war nicht allzu überraschend, da vor Cantor fast jeder davon ausging, dass es nur eine Größe für die Unendlichkeit gab. Cantors Beweis, dass einige unendliche Mengen größer sind als andere — zum Beispiel sind die reellen Zahlen größer als die ganzen Zahlen — war jedoch überraschend und stieß zunächst auf großen Widerstand einiger Mathematiker, insbesondere des deutschen Leopold Kronecker. Darüber hinaus führte Cantors Beweis, dass die Potenzmenge einer Menge, einschließlich einer unendlichen Menge, immer größer ist als die ursprüngliche Menge, dazu, dass er eine immer größere Hierarchie von Kardinalzahlen, ℵ0, ℵ1, ℵ2 …, schuf, die als transfinite Zahlen bekannt sind. Cantor schlug vor, dass es keine transfinite Zahl zwischen der ersten transfinite Zahl ℵ0 oder der Kardinalität der ganzen Zahlen und dem Kontinuum (c) oder der Kardinalität der reellen Zahlen gibt; mit anderen Worten, c = ℵ1. Dies ist jetzt als Kontinuumshypothese bekannt und hat sich in der Standardmengenlehre als unentscheidbarer Satz erwiesen.